

WADA / Science and Investigations Symposium - Istanbul

Beyond Analytical Results

Martial Saugy, Norbert Baume, Neil Robinson, Nicolas Jan, François Marclay

Swiss Laboratory for Doping Analyses Centre Hospitalier Vaudois & University of Lausanne

IL | Université de Lausanne Faculté de biologie et de médecine

- Already a long experience
- The forensic approach of anti-doping
- How DNA can help
- Beyond the passport
- The Prevalence of doping /Clean sport
- Pharmacokinetic / Re-analyses
- Where do we go?

- Already a long experience
- The forensic approach of anti-doping
- How DNA can help
- Beyond the passport
- The Prevalence of doping /Clean sport
- Pharmacokinetic / Re-analyses
- Where do we go?

Already a long experience

Prof. Donike Cologne Laboratory

PHILIP

Prof. Ljungqvist IAAF

- Already a long experience
- The forensic approach of anti-doping
- How DNA can help
- Beyond the passport
- The Prevalence of doping /Clean sport
- Pharmacokinetic / Re-analyses
- Where do we go?

The forensic approach of anti-doping

2003-2004: After investigations on blood parameters in the population of professional cyclists, the prevalence of low reticulocytes showed an obvious re-apparition of blood transfusion in the field...

Zorzoli & Rossi, 2010, 2012

The forensic approach of anti-doping

After the Hamilton case, the Landis case and the Puerto affair, WADA promotes the forensic approach in the fight against doping.

The first step was the introduction of the Athlete Biological Passport based on a collaboration between

WADA, UCI and the Lausanne Laboratory (LAD)

At this stage, the LAD set up a collaboration with the University Institute of Scientific Police & Criminal Sciences. 2 specialists have been hired to explore the Anti-doping intelligence in close collaboration with the Laboratory.

- Already a long experience
- The forensic approach of anti-doping
- How DNA can help
- Beyond the passport
- The Prevalence of doping /Clean sport
- Pharmacokinetic / Re-analyses
- Where do we go?

In 2007, medical equipment was found in a dustbin behind a team hotel during an international rowing competition (Rotsee, Switzerland). The LAD received the mandate by FISA to cooperate for an investigation.

More than 30 bottles of drugs and several syringes found in a dustbin.

No forbidden substances.

13 infusion systems.

Jan & *al*, Forensic Sci Int. 2011;213:109-13.

DNA analyses on red residues from 10 infusion systems

Circumstantial information

- Dustbin location
- Inscriptions on packaging

маницает ранение на коже Однорахи Вадонепроницаемый Обанить в сухом прохладном месте ата производства: 05/2006 Годи в о как основа с клеевой пропиткой Сос

In 2007-2008, IAAF used DNA to control potential manipulation of the athlete's urine sample

Based on differences in steroid profiles, IAAF suspected that several athletes were not providing their own urine during out of competition controls.

DNA comparison between IC and OOC urine were performed.

Urines from 7 athletes were not corresponding, after comparison also with reference blood samples

They were charged because of urine substitution and have been suspended for a period of 2 years and 9 months.

CAS 2008/A/1718 to CAS 2008/A/1724

http://www.tas-cas.org/d2wfiles/document/3767/5048/0/20091118165643673.pdf (last visited May 2, 2010).

Legitimacy and constraints of DNA tests in Anti-Doping

Implementation of DNA profiling is described in 2015 WADA code,

BUT :

- 1. Need to harmonize the profiling kits (loci/markers)
- 2. Compatible with data protection ?
- **3**. DNA profiling doesn't provide information about suspicious result, but only on the identity of the donor.

To our point of view, there is a necessity to develop a standardized model of DNA profiling trough a DNA testing policy with guidelines or technical document.

Inclusion of DNA profiling in the Athlete's passport ? Would be a progress...

- Already a long experience
- The forensic approach of anti-doping
- How DNA can help
- Beyond the passport
- The Prevalence of doping /Clean sport
- Pharmacokinetic / Re-analyses
- Where do we go?

The passport, by the individual and longitudinal examination of the biological pattern from the athlete is one of the best example of the link between Science and Investigation

The technical application of the passport is using a body of evidences

to assess the normality or abnormality of a biological profile, then possibly to declare an adverse passport finding.

Drug Test Anal. 2012 Nov;4(11):846-53. Schumacher YO¹, Saugy M, Pottgiesser T, Robinson N.

Drug Test Anal. 2012 Nov;4(11):846-53. Schumacher YO¹, Saugy M, Pottgiesser T, Robinson N.

Sample collection number

- Already a long experience
- The forensic approach of anti-doping
- How DNA can help
- Beyond the passport
- The Prevalence of doping / Clean sport
- Pharmacokinetic / Re-analyses
- Where do we go?

IAAF Blood tests: 2001 - 2009

Tool to measure the prevalence of blood doping

Clin Chem. 2011 May;57(5):762-9.

Prevalence of blood doping in samples collected from elite track and field athletes.

Sottas PE¹, Robinson N, Fischetto G, Dollé G, Alonso JM, Saugy M.

	nª	Occurrence	
Athletes	7289	Number: 2737	
Sex	7289	Male: 55%	
		Female: 45%	
Competition	7287	Pre: 71%	
		In: 6%	
		Out: 23%	
Age	6266	<19 years: 6%	
		19-24 years: 28%	
		>24 years: 66%	
Nationality	6597	A: 9.8%	
		B: 7.3%	
		C: 6.1%	
		D: 4.7%	
		E: 4.0%	
		F: 3.9%	
		G: 3.8%	
		Other: 140 <3.7%	
Ethnicity	3487	White: 63%	
		Asian: 9%	
		African: 27%	
		Oceanian: 1%	
Sport	6328	Endurance: 79%	
		Nonendurance: 21%	

 Table 2. Period prevalence estimates of abnormal blood profiles in elite track and field athletes.

nª	Prevalence M1, % ^b	Prevalence M2, %
4028	12 (10–15)	12 (10–15)
205	48 (35–63)	78 (54–99)
352	3 (1–11)	1 (0–2)
257	23 (15–30)	28 (17–36)
208	6 (3–19)	5 (0–17)
160	18 (11–30)	18 (7–28)
148	6 (1–25)	2 (0–22)
160	39 (20–54)	51 (21–87)
3261	18 (15–21)	18 (15–21)
445	46 (35–58)	50 (35–68)
130	8 (4–34)	2 (0–11)
147	12 (4–20)	14 (1–28)
103	1 (0–11)	0 (0–3)
106	11 (7–20)	8 (1–14)
110	6 (3–19)	0 (0–13)
65	36 (13–62)	36 (5–66)
	n ^a 4028 205 352 257 208 160 148 160 3261 445 130 147 103 106 110 65	naPrevalence M1, %b402812 (10–15)20548 (35–63)3523 (1–11)25723 (15–30)2086 (3–19)16018 (11–30)1486 (1–25)16039 (20–54)326118 (15–21)44546 (35–58)1308 (4–34)14712 (4–20)1031 (0–11)10611 (7–20)1106 (3–19)6536 (13–62)

Blood tests 2001-2009

Prevalence M2: Micro-doses of EPO

<u>Clin Chem.</u> 2011 May;57(5):762-9.

Prevalence of blood doping in samples collected from elite track and field athletes.

Sottas PE¹, Robinson N, Fischetto G, Dollé G, Alonso JM, Saugy M.

2011 IAAF World Championships in Daegu: blood tests for all athletes in the framework of the Athlete Biological Passport

Neil Robinson¹, Gabriel Dollé², Pierre-Yves Garnier² & Martial Saugy^{*1} <u>Bioanalysis</u> 2012, Vol. 4, No. 13, Pages 1633-1643

Figure 3. Gender-dependant distribution of the year of birth of the athletes.

Endocrine Research

Serum Androgen Levels in Elite Female Athletes

Stéphane Bermon, Pierre Yves Garnier, Angelica Lindén Hirschberg, Neil Robinson, Sylvain Giraud, Raul Nicoli, Norbert Baume, Martial Saugy, Patrick Fénichel, Stephen J. Bruce, Hugues Henry, Gabriel Dollé, and Martin Ritzen

	n	Median	P25-P75	Minimum	Maximum
Age, y	849	26.0	23.0-29.0	16.0	47.0
T, nmol/L	849	0.69	0.50-0.93	0.01	29.30
DHEAS, μ mol/L	849	4.21	2.82-5.86	0.40	15.40
A4, nmol/L	849	3.32	2.51-4.40	0.47	18.85
SHBG, nmol/L	849	61.00	43.40-83.70	5.66	573.00
FT, pmol/L	849	8.20	5.34-12.18	0.12	469.28
LH, IU/L	849	3.53	1.84-6.24	0.10	88.40
FSH, IU/L	849	4.12	2.55-5.67	0.10	65.90
After removal of 10 athletes with confirmed					
DSD and/or doping					
Age, y	839	25.0	23.0-29.0	16.0	47.0
T, nmol/L	839	0.69	0.50-0.91	0.01	11.90
DHEAS, μ mol/L	839	4.23	2.80-5.86	0.40	15.40
A4, nmol/L	839	3.32	2.49-4.40	0.47	18.85
SHBG, nmol/L	839	61.40	43.70-84.20	5.66	573.00
FT, pmol/L	839	8.06	5.31-11.97	0.12	242.70
LH, IU/L	839	3.53	1.81-6.25	0.10	88.40
FSH, IU/L	839	4.10	2.51-5.64	0.10	65.90

 Table 1.
 Age and Androgenic Parameters in the Studied Population

Data are presented as median [25th percentile (P25) to 75th percentile (P75)], minimum, and maximum.

Evaluation of longitudinal steroid profiles

from football players in UEFA competitions

between 2008 and 2012

A Collaborative and retrospective study between 12 European WADA accredited Laboratories

EURO 2008

- Austria (OOC) and Switzerland (IC)
- Harmonization of the steroid profile quantification
 - Solid basis for data comparison

EURO 2012

- Poland (OOC and IC)
- Close collaboration with austrian and swiss antidoping labs
 - Possibility to compare results between both competitions
- Other european competitions
 - UEFA EURO Qualifiers, UEFA Champions Leagues, UEFA Europa League

Significant database to valorize !

- Already a long experience
- The forensic approach of anti-doping
- How DNA can help
- Beyond the passport
- The Prevalence of doping / Clean sport
- Pharmacokinetic / Re-analyses
- Where do we go?

Example of Cocaine case: a rider was found positive with 181 ng/ml BZE and 45 ng/ml MeE.

Rider explanation:

Mate de coca from his Mother in law in Columbia

Urine test: 28 hours after intake

Plausible? Pharmacokinetic data can help

Why should we re-analyze the stored samples:

Because the new methods are more sensitive and new metabolites are detected

Example of Oxandrolone

Guddat et al, Anal Bioanal Chem. 2013 Oct;405(25):8285-94

Why should we re-analyze the stored samples:

Because the new methods are more sensitive

and new metabolites are detected

Yes, but: When ?

Do we know if there is a deterrent effect of the re-analyses and is that any relation with the time after the test.

Yes, but: How?

We need a specific technical document for the re-analyses to harmonize, to target, to decide

Yes, but: How much?

What is the real ratio cost-benefit of the process long term storage/re-analyses

- Already a long experience
- The forensic approach of anti-doping
- How DNA can help
- Beyond the passport
- The Prevalence of doping / Clean sport
- Pharmacokinetic / Re-analyses
- Where do we go?

Where do we go?

Ways for improving the effectiveness of Anti-Doping

Code's latitude

"Facts related to anti-doping rule violations may be established by any reliable means."

Forensic context

Use of science in service of the law

Multidisciplinary research

Deeper & broader understanding of doping

Scientific innovation

Proactive detection & resolution of doping

Anti-Doping Intelligence

Acknowledgements

To the Turkish Olympic Committee and to WADA

