TUE Physician Guidelines

TRANSGENDER ATHLETES

1. Introduction

With continuously evolving social, legal, cultural, ethical and clinical practice models globally, participation of transgender athletes is becoming increasingly common in sports at all levels. The expression of gender characteristics and identities that are not stereotypically associated with a person’s assigned sex at birth should not be considered as pathologic, even if it may require a variety of medical interventions.

The language around these different expressions is subject to continuous change, and multiple terms have been/are used, e.g., transgender, transsexual, female to male (FtM), male to female (MtF), transwomen/-men or gender-nonconforming. For the purpose of this document, the terms transgender male and transgender female athletes are used. Individuals who were assigned female sex at birth who masculinize their body typically identify as transgender males. Vice versa, individuals assigned male at birth who feminize their body typically identify as transgender females.

The exclusive purpose of this medical information is to define the criteria for granting a Therapeutic Use Exemption (TUE) for the treatment with substances on the Prohibited List to transgender athletes. It is not the purpose of this medical information to define the criteria for the eligibility of these athletes to participate in competitive sport, which is entirely left to the different sporting federations and organizations.

The individual sporting federations and organizations need to decide on the eligibility of transgender athletes in their sport, and a TUE will only be considered for eligible athletes. In both transgender male and transgender female athletes, therapy is principally aimed at achieving hormone levels within the normal range of the experienced gender.

Since testosterone is the critical factor influencing performance in sports, it is important that the criteria for the granting of a TUE ensure that both transgender male and transgender female athletes have physiological androgen exposure within the range of the non-transgender male and non-transgender female athletes with whom they compete.

Levels of circulating testosterone and their influence on muscle mass and strength generally exhibit considerable inter-individual variability in males and females. In transgender athletes, physical outcomes are further influenced by the duration and the type of treatment (hormones and/or surgical).
2. Diagnosis

1) Medical History

Transgender/gender incongruent individuals are those with a gender identity other than their sex designated at birth (that is usually based on external genitalia). Some transgender/gender incongruent individuals will suffer distress from this incongruence.

The distress that is caused by the discrepancy between an individual’s gender identity and their sex designated at birth is called gender dysphoria and may appear before, during or after puberty. In some individuals, there is no history of gender nonconforming behaviors in childhood; and an adolescent’s or adult's gender dysphoria may come as a surprise to others in their surroundings.

Medical history will elaborate on the diagnostic workup and consequent treatment. Many individuals need both hormone therapy and surgery, while others need only one of these treatment options, and some need neither. Surgical treatment alone is rare. In transgender male athletes, surgeries include hysterectomy and/or oophorectomy, in transgender female athletes orchidectomy. In a recent review, it was noted that many transgender males and females undergo cosmetic gender affirmation surgery rather than gonadectomies or genital surgery.

2) Diagnostic Criteria

The ICD-10 classification and criteria for gender identity disorders are currently under review to account for advances in research and clinical practice, shifts in social attitudes and the relevant laws and emerging human rights standards. ICD-11 will most likely distinguish issues related to gender identity from mental disorders and introduce different terms such as gender incongruence.

In transgender athletes who are eligible for competition based on the rules of their respective sport, the process that will have taken place prior to their transition may vary considerably depending on the medical community and the law in the respective country.

3) Relevant Medical Information

Transgender athletes may be granted a TUE only once their eligibility and gender has been established with their sport federation. The respective criteria and characteristics of eligibility defined by their sport need to be documented in the TUE application.

A TUE application needs to include a report by a health professional providing care for transgender persons and detail the medical history including any previous partially or fully reversible physical treatment. This report should be complemented by an endocrinologist’s report on initialization of hormone therapy and a surgical report where
applicable. Prior to treatment, a full general medical assessment needs to be completed to assess the individual risk associated with the different therapeutic options.

3. **Medical Best Practice Treatment**

Hormone therapy will be essential for the anatomical and psychological transition process in most transgender athletes.

1) **Name of prohibited substances**

The cross-sex hormone (=gender affirming hormone) administered to transgender male athletes is testosterone which is prohibited. Testosterone, various testosterone esters including long-acting or oral testosterone undecanoate, testosterone cypionate, enanthate, or mixed testosterone esters might be used depending on the medical indication as well as local and individual logistics.

The cross-sex hormone (=gender affirming hormone) administered to transgender female athletes is estrogen which is not prohibited. The prohibited substance administered to transgender female athletes for therapeutic purposes is the antiandrogen and diuretic spironolactone. Spironolactone binds to the androgen receptor and competes with dihydrotestosterone (DHT), the active metabolite of testosterone, blocking its action. Although the mechanism is unknown, spironolactone may also reduce overall testosterone levels. Spironolactone allows reduction in the estrogen doses required to optimize the hormone regime.

Notes:

- Athletes who apply for a TUE for spironolactone will also need to apply for TUE for any threshold substances they might take simultaneously (e.g., salbutamol, salmeterol, methylephedrine, ephedrine).
- Gonadotropin-Releasing Hormone (GnRH) analogues are used in adjunct with estrogens as long-term therapy in transgender female athletes and lower testosterone levels more effectively than other estrogen-anti-androgen combinations. They are currently prohibited in male athletes due to their initial stimulation effect on testosterone. Transgender athletes who are eligible to participate as females in their sport do not require a TUE for GnRH analogues. If a transgender athlete is feminising their body while still participating as a male in their sport and is therefore subject to anti-doping regulations for male athletes, then a TUE should be requested.
- All therapeutic interventions in transgender females are aimed at lowering testosterone levels/counteracting testosterone effects. Given this therapeutic
goal and the performance-enhancing effect of testosterone, there is no known indication for testosterone supplementation in transgender female athletes.

2) Route of administration

i. Transgender male athletes:

1. Intramuscular: testosterone undecanoate, cypionate, enanthate or mixed esters. The treatment must be recorded by a health professional and kept available for review at any time.
2. Testosterone pellets might be inserted subcutaneously and provide constant testosterone levels avoiding peaks and troughs.
3. Testosterone patches, gels and creams slowly diffuse testosterone through the skin and have a daily dosing regimen avoiding peaks. There is a risk for skin contact to cause inadvertent exposure to other athletes, and therefore the site of application must be covered in contact sports. A buccal testosterone tablet is also available.
4. Oral administration of testosterone undecanoate is less frequently used. After absorption from the GI tract, first-pass metabolism of testosterone creates very low and unsatisfactory oral bioavailability. Oral testosterone undecanoate is absorbed via gut lymphatics but only when taken together with a fatty meal. Alkylated androgens such as 17α-methyl testosterone are hepatotoxic and should not be used.

ii. Transgender female athletes:

Spironolactone is administered orally.

3) Dosage and Frequency

i. Transgender male athletes:

Regimens to change secondary sex characteristics follow the general principle of hormone replacement treatment of male hypogonadism. The exact dosage and frequency are to be determined by the prescribing endocrinologist utilizing standard dosage regimens.

Intramuscular administration of testosterone cypionate, enanthate or mixed testosterone esters every one to four weeks may result in fluctuating blood testosterone levels with peaks and troughs. The recommended standard doses are a maximum dose of 100-125 mg weekly, or 200-250 mg every two to three weeks. More stable and physiological levels are achieved with shorter intervals between doses (e.g., weekly versus every two weeks). Even more stable levels
may be achieved with long-acting testosterone undecanoate, which may be well suited for transgender male athletes competing at the elite level. The standard dosing regimen requires a loading dose (1000 mg) during initiation of treatment and then four 1000 mg doses per year. Optimal clinical results may require individual dose titration around the 12-week dose interval, ranging between 10-14 weeks, according to clinical effects and trough serum levels.

For injectable testosterone, peak testosterone (24-48 hours after injection) levels can transiently exceed the normal reference upper limit. Therefore, the dosage should be monitored with trough serum testosterone levels. The testosterone product, dosage and timing of the previous treatment with injectable testosterone products must be recorded and submitted for annual review or for dosage changes.

Testosterone gel can be monitored by serum testosterone levels at any time. Any change in product, dosage or treatment schedule of testosterone should be approved by the ADO.

Oral testosterone undecanoate administration is usually twice or thrice daily with meals.

ii. **Transgender female athletes:**

Spironolactone 100-200 mg taken daily. Higher doses up to 400 mg might be required to achieve low level testosterone thresholds defined by the sport.

4) **Recommended duration of treatment**

Testosterone therapy is life-long in transgender male athletes unless contraindications occur (for TUE validity see 7.).

Spironolactone in combination with estrogen in transgender female athletes is also life-long unless there is removal of the gonad, or where therapy is changed to use another testosterone-lowering agent (e.g., GnRH analogues if available and/or indicated).

4. **Other Non-Prohibited Alternative Treatments**

Transgender male athletes require hormonal treatment with testosterone, for which there is no non-prohibited alternative.

In transgender female athletes, GnRH analogues (not prohibited in females) or the progestin cyproterone acetate (in general not prohibited) may be used and in fact achieve lower
testosterone levels than estrogen/spironolactone combinations. However, cost and availability in some countries might prevent athletes from gaining access to these therapies. In addition, safety and comparative effectiveness data do not exist to mandate one approach versus another.

5. **Consequences to Health if Treatment is Withheld**

In transgender athletes, hormones help to optimize a gender role experience congruent with gender identity, improve quality of life, and reduce mental health problems. It has been shown that the incidence of mental health problems is higher prior to hormonal treatment in transgender persons desiring medical transition.

In transgender male athletes, there is an increased risk of bone density loss after oophorectomy if testosterone therapy is interrupted or insufficient.

6. **Treatment Monitoring**

To control for the secondary effects of receiving long-term hormone therapy, any transgender athlete needs permanent thorough medical monitoring by a health professional providing care for transgender persons or experienced clinicians as applicable. Providers should be knowledgeable of the most up-to-date hormone guidelines by the World Professional Association for Transgender Health (WPATH) and/or The Endocrine Society (see references).

It is the transgender male athlete’s responsibility to provide the TUEC with a complete record of testosterone prescriptions of oral, gel or buccal testosterone products and date, dosage and name of medical personnel administering injections of testosterone.

Unannounced urine testing (at least 1-2 times per year) should be conducted by the ADO. Furthermore, regular serum testing as ordered by the athlete’s health professional providing care (at least 1-2 times per year) is required and the relation to injection timing or gel application should be clearly noted. Treatment should use standard testosterone doses which should return the mid-interval testosterone to mid-normal levels.

In transgender female athletes, the therapeutic goal of spironolactone combination therapy will have to consider the eligibility criteria of the sport that define testosterone threshold values. The sport will also define the exact method and how often values are to be monitored.
7. **TUE Validity and Recommended Review Process**

As mentioned above, hormone replacement is usually continued lifelong, unless medical contraindications arise. TUE validity should be for ten (10) years in transgender male athletes with a mandatory requirement for annual follow-up reports including testosterone dosing regimens and levels to be submitted to the TUEC as above.

TUE validity should also be for ten (10) years in transgender female athletes with a requirement for annual follow-ups (the sport’s eligibility criteria might define further review needs). In transgender female athletes who undergo orchidectomy, spironolactone will no longer be necessary after the intervention.

8. **Any Appropriate Precautionary Matters**

Absolute contraindications to testosterone therapy include pregnancy (not applicable in case of transgender male after hysterectomy) and untreated polycythemia with a hematocrit of 55% or higher.

Baseline laboratory values including hematocrit are important to both assess initial risk and evaluate possible future adverse events. All transgender male athletes need to be carefully monitored for cardiovascular and diabetes risk factors. Even though testosterone has not been shown to increase risk in healthy patients, it might do so in those with risk factors. Lipid profiles might be affected and may be regularly assessed.

Spironolactone is typically contraindicated in patients with anuria, acute renal insufficiency, significant impairment of renal excretory function, hyperkalemia, Addison's disease, and with concomitant use of eplerenone (anti-mineralocorticoid used in chronic heart failure), all conditions rather unlikely to be seen in active athletes.

Being given a potassium-sparing diuretic, transgender female athletes receiving spironolactone should be monitored for their blood pressure reactions and hyperkalemia.
References

11. IOC Consensus Meeting on sex reassignment and hyperandrogenism. Nov 2015. Available from:

