PROJECT REVIEW

"Detection of doping with Myostatin-Propeptide in human urine and blood"

Christian Reichel, Veronika Scheiblhofer, Günter Gmeiner (Seibersdorf Labor GmbH, Austria)

Class S4 of WADA’s Prohibited List 2019 (“Hormone and metabolic modulators”) lists myostatin inhibitors under sub-chapter 4 (“Agents preventing activin receptor IIB activation”). Like follistatin, myostatin-propeptide suppresses signaling of myostatin and subsequently leads to an increase in muscle mass and loss of body fat. In serum, >70% of myostatin is bound to myostatin-propeptide and thus myostatin-propeptide regulates skeletal muscle mass, i.e. if myostatin-propeptide is administered, more myostatin will be inhibited and then more muscle mass will be developed. Myostatin-propeptide is a glycoprotein containing one N-glycosylation site and 243 amino acids. Typical concentrations in serum and plasma are in the range of ng/mL.

So far, no approved myostatin-propeptide pharmaceuticals are available. Nevertheless, myostatin-propeptides can be bought on the black market for “research purposes”. They are labelled either “MyoPro”, “HMP”, “Myostatin-Propeptide (HMP)”, or erroneously “GDF-8” and “Myostatin”. All of these proteins are expressed in E. coli and hence lack the characteristic glycosylation of human endogenous myostatin-propeptide. This fact will be exploited in order to detect doping with myostatin-propeptide. After immunoaffinity purification (serum, urine), myostatin-propeptide will be separated by electrophoresis (SDS- or IEF-PAGE) and detected by Western blotting. Due to the missing glycosylation, “black market” products will not only differ in molecular mass but also isoelectric point (pI) from endogenous myostatin-propeptide.