

Developments and challenges in the detection of doping with peptide hormones and related substances

# New techniques for extraction, separation, and detection of EPO

## Dr. Zhen Liu

#### State Key Lab of Analytical Chemistry for Life Science Nanjing University

Rome

June 14-16, 2011

### Outline

- Ø Nanoparticles-based extraction-capillary zone electrophoresis-native fluorescence detection of EPO
- Ø Boronate affinity monolithic capillaries for specific extraction of EPO

### Outline

- Ø Nanoparticles-based extraction-capillary zone electrophoresis-native fluorescence detection of EPO
- Ø Boronate affinity monolithic capillaries for specific extraction of EPO

## **The IOC-validated EPO assay**



## **Our proposed strategy**



## Capillary zone electrophoresis (CZE)-UV absorbance detection of EPO standard



Capillary, bare fused-silica capillary with 60 cm total length (50 cm effective length) and 50  $\mu$ m id; capillary temperature, 35 °C; separation voltage, 15 kV; BGE, 10 mM sodium acetate buffer containing 7 M urea, 10 mM Tricine, 3.9 mM putrescine, and 100 mM NaCl at pH 5.50; UV detection wavelength, 214 nm; sample, 1 mg/mL EPO, injected at 0.5 psi for 5 s.

#### Capillary zone electrophoresis (CZE) with online sample concentration of EPO standard



Principle of large volume sample stacking-reversed pH junction (LVSS-RPHJ)



CZE with LVSS-RPHJ of EPO

Sample and injected zone length (A) 0.02 mg/mL, 24.5 cm; (B) 0.01 mg/mL, 49 cm.

The detection sensitivity can be improved by 50–100 times, but at the price of resolution loss.

### In-lab built deep UV LIF detection (dual channel LIF)



Beckman Coulter PACE MDQ system



Fiber and fiber adapter



#### Comparison of the LIF detection of intact protein and fluorescent dye labeled protein



#### Native fluorescence

More sensitive as compared with UV absorbance (1 order of magnitude higher)

Original properties are preserved

Label-free

#### **Fluorescent labeling**

Much more sensitive as compared with native fluorescence (50 folds higher) Variation of the original properties Multiple labeling

#### Deep UV LIF detection of EPO and comparison with UV absorbance



Label-free, identical finger-print profile

Improved detection sensitivity, 1 order of magnitude higher as compared with UV absorbance

## CZE-LINF with on-line sample concentration of EPO standard



### CZE with LVSS-RPHJ of EPO

Sample concentration: 0.001 mg/mL ( $3 \times 10^{-8}$  mol/L).

#### **Procedure of magnetic particles-based extraction**



#### Amino-functionalized magnetic nanoparticles (Amino-MNPs)





## Random immobilization of antibodies through glutaraldehyde coupling



#### **Extraction of AFP by anti-AFP immobilized MNPs**



#### Oriented immobilization of anti-AFP IgG after oxidation of the carbohydrate moiety



#### **Extraction of AFP by anti-AFP immobilized MNPs**



#### **Extraction of EPO by anti-EPO immobilized MNPs**



## Oriented immobilization of Anti-EPO IgG to protein A-immobilized magnetic beads



#### **Optimization of experimental conditions (1)**







#### **Optimization of experimental conditions (2)**





#### **Extraction of EPO from clinical injection solution**



#### Limit of detection of EPO from aqueous solution



LOD = 14.7 nM (S/N = 3 for the smallest peak)

#### **Detection of EPO from spiked urine sample**



Ultrafitration 1: Amicon Ultra-15 (MWCO 10 kD), to remove low molecular weight interfacing species;

Ultrafitration 2: Amicon Ultra-0.5 (MWCO 50 kD), to remove high molecular weight interfacing species, such as Tamm Horsfall glycoprotein (MW, 69 kD) and alpha-2-thiol proteinase inhibitor (MW, 72 kD).

## **Our proposed strategy**



### Outline

- Ø Nanoparticles-based extraction-capillary zone electrophoresis-native fluorescence detection of EPO
- Ø Boronate affinity monolithic capillaries for specific extraction of EPO

#### Why monolithic columns?



- Easy to prepare  $\rightarrow$  low cost
- Fast convective mass transfer  $\rightarrow$  high efficiency
- Open channel network  $\rightarrow$  low back pressure, fast separation

### **Boronate affinity**



#### The cis-diol family:

Glycoproteins, glycopeptides, RNA, nucleosides, nucleotides, saccharides

#### **Attractive features:**

- Broad-spectrum affinity  $\rightarrow$  One ligand for all cis-diol biomolecules
- Covalent reaction  $\rightarrow$  High specificity
- Reversible  $\rightarrow$  Easy-to-control capture/release
- Fast desorption speed  $\rightarrow$  Nice peak shape, low carryover
- Eluted under acidic solution  $\rightarrow$  Compatible with MS

# Boronate affinity monolithic capillaries with different features and functions

| Name                           | monomer/crosslinker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | characteristics                                                        | Specificity            | Publication                                        |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------|----------------------------------------------------|
| Poly (VPBA-<br>co-EDMA)        | $H_{O}^{HO} \rightarrow H_{O}^{HO} + H_{O}^{O} \rightarrow H_{O}^{HO} + H_{O}^{O} \rightarrow H_{O}^{HO} + H_{O}^{O} \rightarrow H_{O}^{HO} + H_{O}^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hydrophobic, loading<br>pH≥8.0                                         | Poor                   | J Chromatogr A, 2009,<br>1216, 4768–4774           |
| Poly (VPBA-<br>co-MBAA)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hydrophilic, loading pH $\ge 8.0$                                      | Good                   | J Chromatogr A, 2009,<br>1216, 8421–8425.          |
| Poly (SPBA-<br>co-MBAA)        | $HO_{B} \rightarrow S_{O} \rightarrow H \rightarrow S_{O} \rightarrow H \rightarrow S_{O} \rightarrow S_{$ | Hydrophilic, loading<br>pH ≥ 7.0<br>Secondary separation<br>capability | Good                   | Chem Commun, 2011, 47,<br>5067 - 5069.             |
| Teamed<br>boronate<br>affinity | $H_{0} = 0^{H}$ $H_{1} = 1$ $H_{1} = 1$ $H_{1} = 1$ $H_{2} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weakly hydrophobic,<br>loading pH ≥ 7.0                                | Good                   | Angew Chem Int Ed, 2009,<br>48, 6704-6707.         |
| Wulff-type<br>boronate         | OH H<br>N-OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | loading pH ≥ 5.5                                                       | Good                   | Chem Commun, in press<br>(DOI:10.1039/c1cc11096a). |
| Protein A/G<br>like            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | loading pH ≥ 7.0,<br>Highly selective to<br>antibodies                 | Specific to antibodies | under preparation                                  |

#### Selective extraction of glycoproteins by G2 monolith at basic pH



(A) Direct MALDI-TOF MS analysis of a 1:1:1 mixture of the glycoprotein RNase B with the nonglycoproteins RNase A and myoglobin; (B) Direct MALDI-TOF MS analysis of the glycoprotein RNase B; (C) Extraction of RNase B from the mixture in (A) using the poly (VPBA-co-MBAA) and followed with MALDI-TOF MS analysis.

LOD:  $10^{-11}$  mol RNase B (S/N = 200)

**Improved sensitivity, selective!** 

Unpublished data

## Specific extraction of EPO by G2 monolith at physiological pH



(A) Direct MALDI-TOF MS analysis of a 1:1:1 mixture of EPO, HRP and BSA; (B) MALDI-TOF MS analysis of EPO extracted from the mixture in A; (C) MALDI-TOF MS analysis of EPO extracted from EPO spiked human serum.

EPO: erythropoietin; HRP: Horseradish peroxidase; BSA: Bovine serum albumin

LOD:  $10^{-10}$  mol EPO (S/N = 28)

Unpublished data

## G6 monolith for antibody recognition, purification and immobilization





#### Most non-antibody glycoproteins tested were not retentive.



#### All antibodies tested were captured



Working at neutral pH A polymeric monolith exhibiting protein A/G-like affinity to antibody Sharp peaks

## Identification of species extracted by G6 monolith from human serum



MALDI TOF MS of HSA + Anti-AFP

## Specific extraction of EPO using Anti-EPO antibody immobilized monolith



MALDI TOF MS of EPO extracted by the anti-EPO antibody immobilized BA column from an aqueous EPO solution

### **Concluding remarks**

- 1. A couple of new techniques have been developed for the extraction, separation and detection of EPO, including magnetic particles-based immuno-affinity extraction, monolith-based immuno-affinity extraction, capillary zone electrophoresis, and laser-induced native fluorescence. They provide useful tools for the analysis of samples with high EPO concentration and less complicated composition.
- 2. Due to the very limited concentration of EPO in real samples and the highly interfering matrix, anti-doping analysis of EPO is still a very challenging task. To address these issues, ultrasensitive detection and effective sample pretreatment approaches are highly desired.
- 3. Mass spectrometry-based proteomic analysis might be a useful alternative for anti-doping analysis of EPO, for which the boronate affinity monolithic capillaries might be a useful sample enrichment platform.

## Acknowledgement

**Funding agencies:** 

Ø World Anti-Doping Agency (WADA)
Ø The National Natural Science Foundation of China (NSFC)
Ø The Ministry of Science and Technology of China (MOST)



#### Thank all students in the lab!



### Thank you for your attention!