Multiplexing of Protein Detection Capabilities

Makoto UEKI PhD

Anti-doping Research Laboratory Japan Chemical Analysis Center

Multiplexing of

Protein Assays:

Bead arrays for hGH isoforms

Glycoprotein Assays:

Lectin microarrays for glycoprotein hormones

Gene expression of hGH isoforms, and detection of hGH doping based on the compositions

Gene Expression of GH Isoforms

22K-hGH

GH application study on young athletes Australia-Japan study

Assay Multiplexing

Advantage

Minimizing workload
Less sample volume (Single aliquot)
Less errors for calculating parameters
Unification of operation
Sensitivity (relative to mass spectrometry)

Disadvantage

Less flexible assay conditions Expandability (e.g. Micro chip)

Multiplexed hGH isoform assay by means of Flowcytometry

Same principle as ELISA

Easily expandable & customizable

Similar system can be implemented to normal flowcytometer

Assay Profiles

	EL	ISA	Luminex Multi	Luminex Multiplexed Assay		
	22K-GH	20K-GH	22K-GH	20K-GH		
Capture Ab	A36030	D05	A36030	D05		
Detection Ab	Biotinyl-anti-	hGH AF1047	Biotinyl-anti-h	nGH AF1047		
Conjugate	Streptavidin-H	IRP Conjugate	Strepta	Streptavidin		
Reaction	TM	IBZ	R-phycoerythrin Conjugate			
Measurement	D 450nm / 62	0nm reference	Ex 532nm /	Ex 532nm / Em 580 nm		
Reaction Reagent	TMBZ: 3,3',5,5'-tetramethylbenzidine (Peroxidase substrate "2-component system", KPL Cat No. 50-76-00)					
A36030	Purified anti-hGH mouse Mab (Clone: A36030047P, IgG1k from Biospacific)					
D05	Purified anti-20K-GH mouse Mab (Recloned in MCM, IgG1ĸ)					
22K-GH	WHO98/574 from NIBSC Lot.050413					
20K-GH	Recombinant 20KD-hGH. (Uchida et.al. J Biotechnol. 55, 101-112,1997)					
Streptavidin	AMDEX® Streptavidin (Amersham Bioscience, Cat No. RPN4401V)					
Calibrator, QC	Sheep serum fortified with known ammounts of hGH isoforms					
Biotin	Biotin-XX Protein Labeling Kit (Molecular Probes, Cat No. F-4367)					

Multiplexing by bead arrays

Two or more targets in one measurement
Essentially no lot-to-lot difference
Need single sample volume only
Adding new item does not increase manpower
Ratio calculation can compensate errors

Lectin microarrays

No doping test for glycanes was available.
allow one step glycane profiling
can idetify glycoprotein hormones
differentiate stereo isomers of saccharides and the linkage

N-glycane profiles of EPO and the biosimilars by MS

n-Glycane	m/z	EPO-BRP	EPO-α	ΕΡΟ -β	EPO-κ	ChinaEPO	NESP	CERA
BisAntennary	2,217	0.02	0.11	0.11	0.20	0.17	0.14	0.21
BisAntennary Sia1	2,522	1.01	0.31	0.37	0.12	0.77	0.34	0.56
BisAntennary Sia2	2,827	0.46	0.17	0.19	0.04	0.49	0.13	0.19
TriAntennary	2,582	0.05	0.08	0.14	0.12	0.08	0.23	0.16
TriAntennary Sia1	2,887	0.24	0.29	0.44	0.48	0.21	0.79	0.44
TriAntennary Sia2	3,192	0.53	0.40	0.50	0.33	0.38	0.71	0.47
TriAntennary Sia3	3,497	0.35	0.15	0.15	0.05	0.27	0.16	0.10
TetraAntennary	2,947	0.00	0.06	0.06	0.10	0.05	0.15	0.07
TetraAntennary Sia1	3,252	0.13	0.18	0.29	0.29	0.09	0.56	0.27
TetraAntennary Sia2	3,557	0.32	0.42	0.38	0.37	0.11	0.96	0.30
TetraAntennary Sia3	3,862	0.29	0.35	0.26	0.17	0.29	0.57	0.15
TetraAntennary Sia4	4,167	0.11	0.10	0.05	0.03	0.01	0.10	0.02
TetraAnt Lac1 Sia1	3,617	0.00	0.06	0.03	0.13	0.02	0.04	0.02
TetraAnt Lac1 Sia2	3,922	0.01	0.11	0.02	0.17	0.02	0.07	0.00
TetraAnt Lac1 Sia3	4,228	0.01	0.16	0.00	0.19	0.03	0.04	0.01
TetraAnt Lac1 Sia4	4,533	0.04	0.02	0.00	0.05	0.01	0.00	0.00
TetraAnt Lac2 Sia2	4,287	0.16	0.00	0.00	0.05	0.00	0.00	0.00
TetraAnt Lac2 Sia3	4,593	0.00	0.03	0.01	0.11	0.00	0.00	0.00
No of N-Glycanes		3	3	3	3	3	5	3
Acidity Index		6.88	5.58	4.76	4.82	4.95	8.19	4.10
					Biosi	milars		

Acidity index: NESP> EPOBRP>EPO-α>EPO-β, EPO-κ, China-EPO>CERA

Biosilmilar EPO does have different N-glycane composition and different terminal sialic acid structure.

Acethylation of EPO O-glycanes

O-Clycop	Fragment	macc	Contents of O-Glycopeptide					
U-Glycan	Frayment	IIIdSS	BRP	EPO-α	ΕΡΟ- β	EPO-κ	NESP	CERA
Hex ₁ HexNAc ₁	I	1830	0.02	0.02	0.04	0.02	0.02	0.02
Hex ₁ HexNAc ₁ Sia ₁	I.	2121	0.48	0.50	0.54	0.45	0.34	0.52
Hex ₁ HexNAc ₁ Sia ₁ monoAcetylated	1	2163	0.03	0.02	0.01	0.02	0.03	0.02
Hex ₁ HexNAc ₁ Sia ₂	I I	2412	0.35	0.40	0.39	0.44	0.40	0.37
Hex ₁ HexNAc ₁ Sia ₂ monoAcetylated	1	2454	0.07	0.04	0.01	0.05	0.14	0.05
Hex ₁ HexNAc ₁ Sia ₂ bisAcetylated	I	2496	0.05	0.01	0.00	0.03	0.08	0.02

Certain amounts of O-glycanes of recombinant EPO was detected as the acetate.

Human cell vs CHO

CHO cells do not express β -galactoside a2,6-sialyl transferase (a2,6-STN)

Leland et.al. J.Biol.Chem 269(14), 10628 (1994)

CHO (NeuAca2 \rightarrow 3)₁₋₃ Gal β 1 \rightarrow 4GlcNAc β 1 \rightarrow 2Mana1-6 (NeuAca2 \rightarrow 3)₁₋₃ Gal β 1 \rightarrow 4GlcNAc β 1 \rightarrow 2Mana1-3 > Man-R

Human $(NeuAca2 \rightarrow 6)_{1-3}$ Gal $\beta 1 \rightarrow 4$ GlcNAc $\beta 1 \rightarrow 2$ Mana1-6 $(NeuAca2 \rightarrow 3)_{1-3}$ Gal $\beta 1 \rightarrow 4$ GlcNAc $\beta 1 \rightarrow 2$ Mana1-3 > Man-R

Kihata Y, Tanpakushitsu Kakusan Koso (In Japanese), **36**(5), 775-788 (1991)

Lectin Microarray Chip technology

Antibody assisted detection of targetted glycanes - Lectin-Ab sandwich detection mode-

Lectin microarray detection

Glycopeptide

Buffer Exchange Cy3 labeling Remove excess Cy3 20°C 3hrs on chip

Image Scanning

(Measurement of evanescent fluorescence)

Integration of detector response

Layout of lectin microarrays

	1. LTL	10. TJA-I	19. GNA	28. STL	37. VVA	
	• • •		• • •		$\bullet \bullet \bullet$	
PC	2. PSA	11. PHAL	20. HHL	29. UDA	38. DBA	
	• • •	• • •	• • •	• • •	• • •	
	3. LCA	12. ECA	21. ACG	30. PWM	39. SBA	
	• • •	• • •	• • •	• • •	• • •	
PC	4. UEA-I	13. RCA120	22. TxLCI	31. Jacalin	40. Calsepa	
	• • •	• • •	• • •	• • •	• • •	
	5. AOL	14. PHAE	23. BPL	32. PNA	41. PTL-I	
	• • •	• • •	• • •	• • •	\bullet \bullet \bullet	
PC	6. AAL	15. DSA	24. TJA-II	33. WFA	42. MAH	
	• • •	• • •	• • •	• • •	$\bullet \bullet \bullet$	
	7. MAL	16. GSL-II	25. EEL	34. ACA	43. WGA	
	• • •	• • •	• • •	• • •	• • •	
PC	8. SNA	17. NPA	26. ABA	35. MPA	44. GSL-I A4	
	• • •	• • •	• • •	• • •	• • •	
	9. SSA	18. ConA	27. LEL	36. HPA	45. GSL-I B4	
	• • •	• • •	\bullet \bullet \bullet	• • •	• • •	

SNA & SSA recognize NeuAc α2-6 Gal/GalNAc

Epoetin-a (CHO cell line)

Epoetin-δ (Human cell line)

Choriogonadotropin

CHO cell line

Pregnant urine

Lectin Microarray (lectin-glycan interaction)

Glycoprotein shows identical lectin spectra.

- identifies origin of recombinant products based on the inter-species difference of glycan expression.
- recognizes stereo isomers and the linkage
 - which cannot be differentiated by mass spectrometry.
 - is robust and sensitive.
 - has high sample throughput.