

Document Number:	TD2021EAAS	Version Number:	2.0		
Written by:	WADA Science/EAAS Working Group	A menory of here			
Reviewed by:	WADA Laboratory Expert Group	Approved by:	WADA Executive Committee		
Date:	20 May 2021	Effective Date:	1 June 2021		

Measurement and Reporting of Endogenous Anabolic Androgenic Steroid (EAAS) *Markers* of the Urinary Steroid Profile

1.0 Introduction

The purpose of this *Technical Document (TD)* is to harmonize the measurement and reporting of the "steroid profile" of urine *Samples* in support of the steroidal module of the *Athlete Biological Passport (ABP)* (the steroidal <u>Passport</u>).

1.1 The Steroid Profile

The measurement of steroidal *Markers* [concentrations and ratios of defined Endogenous Anabolic Androgenic Steroids (EAAS)] in a urine *Sample* form the steroid profile for that *Sample* (see Table 1).

The steroid profiles of a series of urine *Samples* collected from an *Athlete* over a period of time constitute the steroidal <u>Passport</u> of that *Athlete*.

The administration of synthetic forms of EAAS can alter one or more of the *Markers* of the urinary steroid profile, resulting in increased or decreased concentrations and/or ratios of specific pairs of steroid *Markers* ^[1-3]. This effect forms the basis for the use of the steroidal <u>Passport</u> as a tool for the detection of doping with EAAS, in particular testosterone (T), its precursors (for example, 4-androstenediol, androstenedione and prasterone), its active *Metabolite* [dihydrotestosterone (DHT)], or its epimer epitestosterone (E).

The steroidal module of the *ABP* utilizes the <u>Adaptive Model</u> in *ADAMS* to trigger *Atypical Passport Findings* (*ATPFs*), which can lead to the performance of <u>Confirmation Procedures</u> (<u>CP</u>), *Target Testing* of an *Athlete*, or to establish *Use* of a *Prohibited Substance* and/or *Prohibited Method* as per *Code* Article 2.2 (see *International Standard* for *Results Management*, Annex C ^[4]).

1.2 Procedure for Determination of the Steroid Profile

Each urine *Sample* shall be analyzed to determine its steroid profile. The determination and reporting of a *Sample*'s steroid profile follows a two-step procedure:

- i. An <u>Initial Testing Procedure</u> (ITP) is conducted to estimate the steroid profile of the *Sample*, and
- A subsequent <u>CP</u> is performed when the reported steroid profile constitutes an ATPF, as determined by the <u>Adaptive Model</u>, or upon request from the <u>Athlete Passport Management</u> <u>Unit (APMU)</u>, the <u>Testing Authority</u> or WADA.

Document Number:	TD2021EAAS	Version Number:	2.0	
Written by:	WADA Science/EAAS Working Group	Approved by:	WADA Executive Committee	
Reviewed by:	WADA Laboratory Expert Group			
Date:	20 May 2021	Effective Date:	1 June 2021	

Table 1. Markers of the Urinary Steroid Profile.

Type of Marker	Steroid Profile Markers	Determination
Concentrations of Steroids	 Androsterone (A); Etiocholanolone (Etio); 5α-Androstane-3α,17β-diol (5αAdiol); 5β-Androstane-3α,17β-diol (5βAdiol); Testosterone (T); and Epitestosterone (E). 	Determined by the <u>Laboratory</u> by GC-MS ⁿ from the combination of the free steroid fraction and the conjugated fraction released after hydrolysis with β -glucuronidase from <i>E. coli</i> .
	- T/E	As reported by the Laboratory in ADAMS.
Ratios of Steroids	 A/T; A/Etio; 5αAdiol/5βAdiol; and 5αAdiol/E 	Automatically computed in <i>ADAMS</i> from respective steroid concentrations after the reporting of the steroid profile by the <u>Laboratory</u> .

1.3 Factors Impacting the Steroid Profile

In addition to the effects mediated by the administration of EAAS, alteration of the urinary steroid profile can occur for a number of other reasons including, but not limited to, the following factors ^[1-3]:

- Intake of alcohol (ethanol);
- The administration of other anabolic androgenic steroids (*e.g.* stanozolol);
- The administration of human chorionic gonadotrophin (hCG) in males;
- The administration of aromatase inhibitors and anti-estrogenic substances;
- The administration of inhibitors of 5α -reductase (*e.g.* finasteride, dutasteride);
- The administration of ketoconazole or other similar compounds (*e.g.* fluconazole, miconazole);
- The use of masking agents (e.g. probenecid) and diuretics;
- Microbial activity;
- Sample manipulation.

Document Number:	TD2021EAAS	Version Number:	2.0			
Written by:	WADA Science/EAAS Working Group	Approved by:	WADA Executive Committee			
Reviewed by:	WADA Laboratory Expert Group					
Date:	20 May 2021	Effective Date:	1 June 2021			

2.0 Initial Testing Procedure (ITP)

2.1 <u>ITP</u> Method Requirements

The quantification of the *Markers* of the steroid profile shall be based on gas chromatography combined with mass spectrometry (GC-MSⁿ; $n \ge 1$).

Table O Deer	uire personate of the	will action of th	a Markara af th	a Charaid Drafila
Table Z. Req	unements of the	intilication of th		e Steroid Profile.

2.1.1 ITP Validation Requirements							
Range of the Method	Shall cover the ranges of <i>Marker</i> concentrations normally found in males and females.						
Enzymatic Hydrolysis	Assess the efficiency of the enzymatic hydrolysis using β -glucuronidase from <i>E. coli</i>						
Derivatization	Assess the efficiency of the trimethylsilyl (TMS) derivatization						
Limits of Quantification (LOQ)	 The LOQ shall be determined during method validation as the lowest concentration that can be measured with an u_c (%) not greater than (≤) 30% and shall meet the following criteria: T, E ≤ 1 ng/mL; 5αAdiol, 5βAdiol ≤ 10 ng/mL; A, Etio ≤ 500 ng/mL 						
	Level	Α	Etio	т	Е	Adiols (5α-, 5β-)	T/E
<u>Measurement</u>		The estimated u_c (%) shall be not greater than (≤) the u_{c_Max} (%) value given below					
Uncertainty, <i>u_c</i> (%)	at <u>LOQ</u>			≤ 30%	6		
	at 5 x <u>LOQ</u>		≤2	20%		≤ 25%	
	(T, E) > 5 ng/mL						≤ 15%
	(T, E) ≤ 5 ng/mL					≤ 30%	
2.1.2 ITP Analysis Requirements							
Sample	The <u>ITP</u> for the quantification of the <i>Markers</i> of the steroid profile shall be conducted on a single <u>Aliquot</u> . When needed, the volume of the <u>Aliquot</u> may be adjusted as a function of its specific gravity (SG) and of the sex of the <i>Athlete</i> .						

Document Number:	TD2021EAAS	Version Number:	2.0
Written by:	WADA Science/EAAS Working Group		
		Approved by:	WADA Executive Committee
Reviewed by:	WADA Laboratory Expert Group		
Date:	20 May 2021	Effective Date:	1 June 2021

Calibration	Calibration standard(s) or a calibration curve shall be included in each sequence of analysis.		
Quality Control	At least two (2) quality control (QC) urine samples containing representative low and high concentrations of the <i>Markers</i> of the steroid profile shall be included in each sequence of analysis.		
Enzymatic Hydrolysis	Purified β -glucuronidase from <i>E. coli</i> shall be used for the hydrolysis of the glucuroconjugated urinary steroids, and the completeness of hydrolysis shall be monitored in each <u>Aliquot</u> with isotopically labeled A-glucuronide (or an equivalent scientifically recognized alternative). <i>H. pomatia</i> mixtures shall not be used.		
Derivatization	The <i>Markers</i> of steroid profile shall be analyzed as TMS derivatives (TMS enol ethers and/or TMS ethers). Completeness of the derivatization shall be controlled in each <u>Aliquot</u> through the monitoring of mono-O-TMS vs. di-O-TMS derivative of A.		
T/E Ratio	The T/E ratios shall be determined from the ratios of chromatographic peak areas or peak heights after correction against a calibrator or a calibration curve.		
Factors Impacting the Steroid Profile	 The <u>Laboratory</u> shall: Monitor for signs of microbial activity [e.g. presence of indicators of 3α-hydroxysteroid dehydrogenase (HSD) activity]; [Comment: The direct enzymatic hydrolysis of urine Samples may increase the effects of microbial contamination.] Test for the presence of conjugated Metabolite(s) of ethanol [e.g. ethanol glucuronide (EtG)], 5α-reductase inhibitors (e.g. finasteride, dutasteride) and ketoconazole (and similar substances). 		

2.2 Reporting the Sample's Steroid Profile from the ITP

Following the performance of the <u>ITP</u>, the <u>Laboratory</u> shall report in *ADAMS* the steroid profile for each *Sample* analyzed.

The Laboratory shall report in ADAMS:

- i. The SG of the Sample, as determined by the Laboratory (see TD DL^[5]);
- ii. The uncorrected concentrations of T, E, A, Etio, 5α Adiol and 5β Adiol, and the T/E ratio;

[Comment: When the <u>ITP</u> measurement of a steroid profile Marker is not possible due to, for example, dilution, unusual matrix interferences, inhibition of the enzymatic hydrolysis or incomplete derivatization, the <u>Laboratory</u> should repeat the analysis with an alternative Sample preparation procedure (e.g. changing <u>Aliquot</u> volumes, application of solid phase extraction, or extraction with a different solvent).

Document Number:	TD2021EAAS	Version Number:	2.0		
Written by:	WADA Science/EAAS Working Group	Approved by:	WADA Executive Committee		
Reviewed by:	WADA Laboratory Expert Group				
Date:	20 May 2021	Effective Date:	1 June 2021		

If, however, a Marker of the steroid profile cannot be quantified, the concentration of the affected Marker shall be reported as "-1". The <u>Laboratory</u> shall make a comment in the Test Report on why this Marker could not be quantified (e.g. < LOQ, incomplete derivatization).

When the chromatographic peak signal for a Marker cannot be detected (i.e. is below the detection capability of the assay), the concentration of the Marker shall be reported as "-2" (See Table 3 for reporting of specific situations for [T], [E], and T/E).

The <u>Laboratory</u> may also provide information on other steroidal parameters such as prasterone (DHEA), dihydrotestosterone (DHT) and 6α -hydroxy-androstenedione (6α -OH-AD) at the request of the <u>Testing Authority</u>, <u>Results Management Authority</u> or the <u>APMU</u>.]

- iii. Any signs of microbial activity in the *Sample*, *e.g.* ratios of 5α -androstanedione (5α AND) to A and 5β -androstanedione (5β AND) to Etio, as determined from the respective steroid concentrations;
- iv. The presence or absence in the *Sample* of substance(s) that may alter the steroid profile (see Article 1.3). The <u>Laboratory</u> shall report the estimated levels of:
 - EtG if \geq 5 μ g/mL;
 - Carboxy-finasteride if \geq 5 ng/mL;
 - 4-hydroxy- and/or 6-hydroxy-dutasteride if ≥ 5 ng/mL;
 - Ketoconazole if \geq 100 ng/mL;
 - Fluconazole if \geq 500 ng/mL;
 - Miconazole if \geq 1,000 ng/mL.

2.2.1 Validity of the Sample Steroid Profile

The validity of the *Sample* will be determined automatically upon reporting of the steroid profile in *ADAMS*. A *Sample* will be invalid only when the *Sample* shows signs of extensive degradation, as determined by:

- $5\alpha AND/A \ge 0.1$, and/or
- 5β AND/Etio ≥ 0.1

[Comment: In addition, following the reporting of the steroid profile in ADAMS by the <u>Laboratory</u>, the Sample may be evaluated as "invalid" by the <u>APMU</u> upon review of the steroid profile data, for example, by considering the presence of substances that may alter the steroid profile in the Sample.]

Document Number:	TD2021EAAS	Version Number:	2.0
Written by:	WADA Science/EAAS Working Group	Approved by:	WADA Executive Committee
Reviewed by:	WADA Laboratory Expert Group	Approved by:	WADA Executive Committee
Date:	20 May 2021	Effective Date:	1 June 2021

Table 3. Summary of conditions for reporting T and E concentrations and T/E ratio.

Concentration of T	Concentration of E	T/E ratio
	Chromatographic peak signal of E measured at or above (≥) <u>LOQ</u> .	
Chromatographic peak signal of T measured at or above (≥) the	[E] ≥ <u>LOQ(E)</u> Report E as measured . Chromatographic peak signal of E detected, but below (<) <u>LOQ</u> .	Report T/E (as determined by the <u>Laboratory</u> from corrected peak heights/areas)
<u>LOQ</u> . [T] ≥ <u>LOQ</u> (⊤)	LOD _(E) ≤ [E] < LOQ _(E) Report E as "-1"	
Report T as measured	Chromatographic peak signal of E not detected.	Report T/E as "-1" Report the <u>LOD_(E)</u>
incustricu	[E] < <u>LOD</u> (E) Report E as "-2"	Comment in ADAMS: T/E ratio could not be measured accurately because E could not be detected.
	Chromatographic peak signal of E measured at or above (≥) <u>LOQ</u> .	
Chromatographic peak signal of T detected, but below (<) the <u>LOQ</u> .	[E] ≥ <u>LOQ(E)</u> Report E as measured Chromatographic peak signal of E detected, but below (<) <u>LOQ</u> .	Report T/E (as determined by the <u>Laboratory</u> from corrected peak heights/areas)
$\underline{LOD}_{(T)} \leq [T] < \underline{LOQ}_{(T)}$	<u>LOD</u> _(E) ≤ [E] < <u>LOQ</u> _(E) Report E as "-1"	
Report T as "-1"	Chromatographic peak signal of E not detected.	Report T/E as "-1"
	[E] < <u>LOD(</u> _{E)} Report E as "-2"	Comment in ADAMS: T/E ratio could not be measured accurately because the concentration of T could not be measured, and E could not be detected
	Chromatographic peak signal of E measured at or above (≥) <u>LOQ</u> .	Report T/E as "-1" Report the <u>LOD_(T)</u>
	[E] ≥ <u>LOQ(E)</u> Report E as measured	Comment in ADAMS: T/E ratio could not be measured accurately because T could not be detected
Chromatographic peak signal of T not detected.	Chromatographic peak signal of E detected but below (<) <u>LOQ</u> .	Report T/E as "-1" Report the <u>LOD</u> (T)
[T] < <u>LOD</u> _(T) Report T as "-2"	<u>LOD</u> _(E) ≤ [E] < <u>LOQ</u> _(E) Report E as "-1"	Comment in ADAMS: T/E ratio could not be measured because T could not be detected, and E could not be measured.
	Chromatographic peak signal of E not detected.	Report T/E as "-2" Report the <u>LOD(E)</u> and <u>LOD(T)</u>
	[E] < <u>LOD</u> (E) Report E as "-2"	Comment in ADAMS: T/E ratio could not be measured because T and E could not be detected.

Document Number:	TD2021EAAS	Version Number:	2.0		
Written by:	WADA Science/EAAS Working Group				
Reviewed by:	WADA Laboratory Expert Group	Approved by:	WADA Executive Committee		
Date:	20 May 2021	Effective Date:	1 June 2021		

3.0 Confirmation Procedures (CP)

The <u>CP</u> for the EAAS *Markers* include the GC-MSⁿ ($n \ge 1$) identification (in compliance with the TD IDCR ^[6]) and quantification, as well as the GC/C/IRMS analysis ^[7] of the *Marker(s)* of the steroid profile.

In addition, the <u>Laboratory</u> shall confirm the presence or absence of factors impacting the steroid profile (see Article 1.3).

3.1 <u>CP</u> Requests (CPRs)

3.1.1 CPRs triggered by Atypical Passport Findings (ATPF) through ADAMS

Once the *Sample*'s steroid profile data are entered in *ADAMS* and matched with an *Athlete*, the <u>Adaptive Model</u> automatically updates the steroidal <u>Passport</u>. If an *ATPF* is identified based on an abnormally high T/E value, a <u>CP</u> request (*ATPF*-CPR) is triggered and sent automatically to <u>Laboratories</u> through *ADAMS*.

Upon receipt of an *ATPF*-CPR, the <u>Laboratory</u> shall proceed with the <u>CP</u> of the steroid profile as soon as possible, unless the presence of ethanol or other factors impacting the steroid profile has been detected in the *Sample*. In such cases, the <u>Laboratory</u> shall receive, within fifteen (15) days from the *ATPF-CPR* notification, an advice from the <u>Passport Custodian</u> or the <u>Testing</u> <u>Authority</u> (or <u>Results Management Authority</u>, if different) on whether to proceed or not with the <u>CP</u> of the Sample's steroid profile.

[Comment: In the absence of communication from the <u>Passport Custodian</u> or the <u>Testing Authority</u> (or <u>Results Management Authority</u>) within fifteen (15) days from the ATPF-CPR notification, the <u>Laboratory</u> shall proceed with the <u>CP</u> of the steroid profile (see Article 3.2)].

Any justification from the <u>Passport Custodian</u> or the <u>Testing Authority</u> (or <u>Results Management</u> <u>Authority</u>) not to proceed with the <u>CP</u> shall be provided in writing and in compliance with the TD APMU ^[8].

[Comment: In cases when the <u>Laboratory</u> is instructed by the <u>Passport Custodian</u> or the <u>Testing</u> <u>Authority</u> (or <u>Results Management Authority</u>) not to perform the <u>CP</u>, the <u>Laboratory</u> shall update the ADAMS Test Report for the Sample with a comment stating that the <u>Passport Custodian</u>, <u>Testing Authority</u> (or <u>Results Management Authority</u>) requested not to perform the <u>CP</u>, and the reasons given.]

When the <u>Laboratory</u> receives an *ATPF*-CPR for a *Sample* for which *Adverse Analytical Finding*(s) (*AAF*) have been reported for other *Prohibited Substance*(s) or *Method*(s), the <u>Laboratory</u> shall consult the <u>Testing Authority</u> (or <u>Results Management Authority</u>, if different) about the need to conduct the <u>CP</u> for the *Markers* of the steroid profile.

Document Number:	TD2021EAAS	Version Number:	2.0	
Written by:	WADA Science/EAAS Working Group	Approved by:	WADA Executive Committee	
Reviewed by:	WADA Laboratory Expert Group			
Date:	20 May 2021	Effective Date:	1 June 2021	

3.1.2 CPRs from the <u>APMU</u>, the <u>Testing Authority</u> (or <u>Results Management Authority</u>, as applicable) or WADA.

The <u>Adaptive Model</u> will also determine abnormal values or sequences of the other ratios of the "steroid profile" (A/T, A/Etio, 5α Adiol/5 β Adiol, 5α Adiol/E). However, in such cases the <u>Laboratory</u> will not receive an automatic "*ATPF*-CPR" notification through *ADAMS*. Instead, the <u>APMU</u> will advise the <u>Testing</u> Authority (or <u>Results Management</u> Authority, if different) on whether the Sample shall be subjected to <u>CP</u>. Therefore, in these cases the <u>Laboratory</u> shall receive a written request from the <u>Testing</u> Authority (or <u>Results Management</u> Authority, if different) before proceeding with the <u>CP</u>.

In the absence of an *ATPF*-CPR, requests for <u>CP</u> can be made also by the <u>Testing Authority</u> (or <u>Results Management Authority</u>, if different), the <u>APMU</u> *, or WADA.

* where the respective client of the <u>APMU</u> has agreed to bestow such authority to the <u>APMU</u>.

3.2 CP Test Methods

3.2.1 CP of Steroid Profile Markers by GC-MSⁿ

The <u>Laboratory</u> shall quantify all the *Markers* of the steroid profile in one <u>Aliquot</u> by a validated <u>Fit-for-Purpose</u> GC-MSⁿ ($n \ge 1$) quantification method. Identification (in compliance with the TD IDCR ^[6]) of the *Markers* that triggered the <u>CP</u> shall be performed as well.

• In every case, the <u>Laboratory</u> shall confirm quantitatively all the *Markers* of the steroid profile before proceeding with the GC/C/IRMS analysis;

[Comment: This requirement does not apply if the <u>Testing Authority</u> (or <u>Results Management</u> <u>Authority</u>, as applicable) has authorized the <u>Laboratory</u> to proceed directly to GC/C/IRMS analysis without a need for a quantitative confirmation of the steroid Markers (for example, in cases of limited Sample volume).

For T/E values, only T needs to be confirmed if E is not detected or the volume of the Sample is not sufficient.]

• In the case of an *ATPF*-CPR for an abnormally high T/E ratio, GC/C/IRMS analysis is not mandatory when the confirmed T/E value is below the confirmation T/E cut-off calculated by the <u>Adaptive Model</u> and provided within the *ATPF*-CPR notification received from *ADAMS*;

• For other <u>CP</u> requests, when the steroid profile <u>CP</u> does not confirm the <u>ITP</u> values that triggered the <u>CP</u> (*e.g.* 5 α Adiol/E value), taking into consideration the expanded uncertainty of the measurement ($U_{95\%}$, k = 2), the <u>Laboratory</u> shall consult the <u>Testing</u> Authority to determine if the GC/C/IRMS analysis is necessary. In the event that GC/C/IRMS analysis is deemed unnecessary, the <u>Laboratory</u> shall update the *ADAMS* report for the *Sample* with the

Document Number:	TD2021EAAS	Version Number:	2.0
Written by:	WADA Science/EAAS Working Group		
		Approved by:	WADA Executive Committee
Reviewed by:	WADA Laboratory Expert Group		
Date:	20 May 2021	Effective Date:	1 June 2021

confirmed values of all the *Markers* of the steroid profile and include a comment that GC/C/IRMS analysis was not necessary.

[Comment: for ratios other than the T/E, the u_c (%) of the ratio shall be calculated by propagation of uncertainties of the corresponding Marker concentrations.]

The same analytical requirements presented in Table 2 for the <u>ITP</u> shall apply for the GC-MSⁿ <u>CP</u>, with the following modifications:

- GC-MSⁿ <u>CP</u> Validation Requirements
 - For determinations of A, Etio, 5α Adiol and 5β Adiol, the u_c (%) shall be not greater than (\leq) 15% when the concentrations are five times (5x) the respective LOQ;
 - For determinations of T, E and T/E ratios, the u_c (%) shall be not greater than (\leq) 15% when the concentrations of T and E are greater than (>) 5 ng/mL.
- GC-MSⁿ <u>CP</u> Analysis Requirements
 - A Solid Phase Extraction (SPE) shall be performed prior to the enzymatic hydrolysis of the *Sample*;
 - Calibration standard(s) and at least two (2) QC urine samples containing representative low and high levels of the *Markers* of the steroid profile shall be included.

3.2.2 GC/C/IRMS <u>CP</u>

Technical and reporting requirements for the GC/C/IRMS <u>CP</u> are specified in the TD IRMS^[7].

When an *AAF* is reported for the *Marker*(s) of the steroid profile based on the results of a GC/C/IRMS analysis performed on the "A" *Sample*, only the GC/C/IRMS analysis, including the identification of the relevant *Markers* (target compounds and endogenous reference compounds) shall be repeated during the "B" *Sample* <u>CP</u>.

3.3 Reporting Results from the CP

3.3.1 "A" Sample

Following the <u>CP</u> performed for the steroid profile on the "A" *Sample*, the <u>Laboratory</u> shall report in *ADAMS*:

- i. The SG of the Sample (determined from a new Aliquot of the "A" Sample);
- ii. The confirmed value of the *Markers* of the steroid profile (concentrations, T/E value), without adjustment for the SG of the *Sample*;

Document Number:	TD2021EAAS	Version Number:	2.0
Written by:	WADA Science/EAAS Working Group		
		Approved by:	WADA Executive Committee
Reviewed by:	WADA Laboratory Expert Group		
Date:	20 May 2021	Effective Date:	1 June 2021

- iii. The associated u_c (expressed in units);
- iv. The GC/C/IRMS confirmation results, if performed (see TD IRMS^[7]). The <u>Laboratory</u> shall update the Test Report for the *Sample* in *ADAMS* (as *AAF*, *Atypical Finding* (*ATF*), or <u>Negative Finding</u>) based on the results of the GC/C/IRMS <u>CP</u>;
- v. The confirmed results (presence/absence) for signs of microbial activity: $5\alpha AND/A$, $5\beta AND/E$ tio, and T_{free}/T_{total} ; based on concentrations;

[Comment: In addition to the determination of the 5 α AND/A and 5 β AND/Etio ratios as signs of microbial contamination, the determination during the <u>CP</u> of an elevated ratio of free Testosterone to total Testosterone (T_{free} / T_{total} > 0.05) will also invalidate (the steroid profile of) the Sample. However, this shall not preclude the performance of the GC/C/IRMS <u>CP</u> or invalidate its results.]

vi. The presence or absence in the *Sample* of substance(s) that do not constitute an *AAF* but may alter the steroid profile (see Article 1.3): if detected in the *Sample*, the <u>Laboratory</u> shall report the confirmed estimated levels of EtG, 5α -reductase inhibitors and -azoles as specified in Article 2.2 (without the need to report the u_c for these determinations).

3.3.2 "B" Sample

Following the performance of the GC/C/IRMS <u>CP</u> for the steroid profile on the "B" Sample, the <u>Laboratory</u> shall report the GC/C/IRMS confirmation results (see TD IRMS^[7]) in ADAMS.

[Comment: If the Sample has not been reported as an AAF for the Marker(s) of the steroid profile based on the results of the GC/C/IRMS analysis, but the steroid profile <u>CP</u> by GC-MSⁿ has been requested for the "B" Sample, then the <u>Laboratory</u> shall report in ADAMS the results of the "B" confirmation of the steroid profile as described for the "A" Sample in Article 3.3.1.]

4.0 Reporting Sample Manipulation (Tampering or Attempted Tampering)

Tampering or *Attempted Tampering* aims to alter the integrity and validity of *Samples* collected during *Doping Control*, including, but not limited to *Sample* substitution with another fluid and urine exchange and/or adulteration (*e.g.* addition of proteases to *Sample*).

[Comment: the substitution of an Athlete's urine Sample with the urine of another individual (urine exchange) can be uncovered using the steroidal <u>Passport</u> and confirmed by DNA analysis across multiple Samples, as described in the TD APMU^[8].]

In cases when a *Sample* is not consistent with human urine (*e.g.* SG \leq 1.001, creatinine \leq 5 mg/dL^[9], non-physiological salt concentration, abnormal pH values, absence or abnormally low levels of endogenous steroids, corticosteroids, proteins, etc.), the <u>Laboratory</u> shall:

i. Report the finding as an *AAF* for *Tampering* or *Attempted Tampering* (class M2.1 of the *Prohibited List*) if the <u>Laboratory</u> can determine the general nature/type of the adulterated *Sample,* which is not consistent with human urine (*e.g.* water, liquor, synthetic urine);

Document Number:	TD2021EAAS	Version Number:	2.0	
Written by:	WADA Science/EAAS Working Group	A menor and have		
Reviewed by:	WADA Laboratory Expert Group	Approved by:	WADA Executive Committee	
Date:	20 May 2021	Effective Date:	1 June 2021	

OR

ii. Report the finding as an *ATF* for *Tampering* or *Attempted Tampering* and include a comment in *ADAMS* advising the <u>Testing Authority</u> to perform further investigations (*e.g.* additional analyses on the *Sample*, *Target Testing* the *Athlete*).

5.0 References

- [1] Mareck U *et al.* Factors influencing the steroid profile in doping control analysis. *J Mass Spectrom.* **43**(7):877-91, 2008.
- [2] Ayotte C. Detecting the administration of endogenous anabolic androgenic steroids. *Handb Exp Pharmacol.* **195**:77-98, 2010.
- [3] Kuuranne T, Saugy M, Baume N. Confounding factors and genetic polymorphism in the evaluation of individual steroid profiling. *Br J Sports Med.* **48**(10): 848-55, 2014.
- [4] The World Anti-Doping Code International Standard for Results Management.
- [5] WADA Technical Document TD DL: Decision Limits for the Confirmatory Quantification of Exogenous <u>Threshold Substances</u> by Chromatography-based <u>Analytical Methods</u>.
- [6] WADA Technical Document TD IDCR: Minimum Criteria for Chromatographic-Mass Spectrometric Confirmation of the Identity of <u>Analytes</u> for Doping Control Purposes.
- [7] WADA Technical Document TD IRMS: Detection of Synthetic Forms of Prohibited Substances by GC/C/IRMS.
- [8] WADA Technical Document TD APMU: <u>Athlete Passport Management Unit</u> Requirements and Procedures.
- [9] Cook J D *et al.* The Characterization of Human Urine for Specimen Validity Determination in Workplace Drug Testing: A Review. *J Anal Toxicol* **24**: 579-588, 2000

[Comment: Current versions of WADA Technical Documents may be found at <u>https://www.wada-ama.org/en/what-we-do/science-medical/laboratories</u>]